C. Xu and E. D. Zaron. Detecting instantaneous tidal signals in ocean models utilizing streaming bandāpass filters. J. Adv. Model. Earth Sys., 16:e2024MS004319, 2024. [ DOI ]
E. D. Zaron. The significance of the long-wavelength correction for studies of baroclinic tides with SWOT. Earth and Space Science, 11:e2024EA003677, 2024. [ DOI ]
M. G. Hart-Davis, O. B. Andersen, R. D. Ray, E. D. Zaron, C. Schwatke, R. L. Arildsen, D. Dettmering, and K. Nielson. Tides in complex coastal regions: early case studies from SWOT. Geophys. Res. Lett., 51:e2024GL109983, 2024. [ DOI ]
E. D. Zaron and S. Elipot. Harmonic Constants for Baroclinic Tide Prediction. Ver. 14. Website and data resource at the NASA PO.DAAC, 2024. [ DOI ]
E. D. Zaron and S. Elipot. Estimates of baroclinic tidal sea level from lagrangian drifters and satellite altimetry. J. Atm. and Ocean. Tech., 41(8):781--802, 2024. [ DOI ]
B. Yadidya, B. K. Arbic, J. F. Shriver, A. D. Nelson, E. D. Zaron, M. C. Buijsman, and R. Thakur. Phase-accurate internal tides in a global ocean forecast model: Potential applications for nadir and wide-swath altimetry. Geophys. Res. Lett., 51:e2023GL107232, 2024. [ DOI ]
E. D. Zaron. Letter to the editor: Factors for assessing researchers. Physics Today, 77(2):11, 2024. [ DOI ]
E. D. Zaron and R. D. Ray. Clarifying the distinction between steric and baroclinic sea surface height. J. Phys. Oceanogr., 53(11):2591--2596, 2023. [ DOI ]
E. D. Zaron, T. A. Capuano, and A. Koch-Larrouy. Fortnightly tidal variability of Chl-a in the Indonesian Seas. Ocean Sci., 19:43--55, 2023. [ DOI ]
E. D. Zaron, B. S. Chua, P. A. Reinecke, J. Michalakes, J. D. Doyle, and L. Xu. The tangent-linear and adjoint models of the NEPTUNE dynamical core. Tellus A, 74(1):399--411, 2022. [ DOI ]
E. D. Zaron. Baroclinic tidal cusps from satellite altimetry. J. Phys. Oceanogr., 52(12):3123--3137, 2022. [ DOI ]
B. K. Arbic, S. Elipot, J. M. Brasch, D. Menemenlis, A. L. Ponte, J. F. Shriver, X. Yu, E. D. Zaron, M. A. Alford, M. C. Buijsman, R. Abernathey D. Garcia, L. Guan, P. E. Martin, and A. D. Nelson. Near-surface ocean kinetic energy distributions from drifter observations and numerical models. J. Geophys. Res., 127(10):e2022JC018551, 2022. [ DOI ]
E. D. Zaron, R. Musgrave, and G. D. Egbert. Baroclinic tidal energetics inferred from satellite altimetry. J. Phys. Oceanogr., 52(5):1015--1032, 2022. [ DOI ]
E. D. Zaron and S. Elipot. An assessment of global ocean barotropic tide models using geodetic mission altimetry and surface drifters. J. Phys. Oceanogr., 51(1):63--82, 2021. [ DOI ]
L. Carrere, B. K. Arbic, B. Dushaw, G. D. Egbert, S. Y. Erofeeva, F. Lyard, R. D. Ray, C. Ubelmann, E. Zaron, Z. Zhao, J. F. Shriver, M. C. Buijsman, and N. Picot. Accuracy assessment of global internal tide models using satellite altimetry. Ocean Sci., 17:147--180, 2021. [ DOI ]
N. Tran, D. Vandemark, E. D. Zaron, P. Thibaut, G. Dibarboure, and N. Picot. Assessing the effects of sea-state related errors on the precision of high-rate Jason-3 altimeter sea level data. Adv. Space Res., 68(2):963--977, 2021. [ DOI ]
J. Verron and 18 co-authors, including E. D. Zaron. The SARAL/AltiKa mission: A step forward to the future of altimetry. Adv. Space Res., 68(2):808--828, 2021. [ DOI ]
B. D. Hamlington, A. S. Gardner, E. Ivins, J. T.M. Lenaerts, J.T. Reager, D. S. Trossman, E. D. Zaron, and 40 co-authors. Understanding of contemporary regional sea level change and the implications for the future. Rev. Geophys., 58:e2019RG000672, 2020. [ DOI ]
A. Nelson, B. Arbic, E. D. Zaron, A. Savage, J. Richman, M. Buijsman, and J. Shriver. Towards realistic baroclinic semidiurnal tide nonstationarity in hydrodynamic models. J. Geophys. Res., 124:6632--6642, 2019. [ DOI ]
E. D. Zaron. Predictability of non-phase-locked baroclinic tides in the Caribbean Sea. Ocean Sci., 15:1287--1305, 2019. [ DOI ]
X. Yu, A. Ponte, S. Elipot, D. Menemenlis, E. D. Zaron, and R. Abernathey. Surface kinetic energy distributions in the global oceans from a high-resolution numerical model and drifter observations. Geophys. Res. Lett., 46:9757--9766, 2019. [ DOI ]
R. Morrow, L.-L. Fu, F. Ardhuin, M. Benkiran, B. Chapron, E. Cosme, F. d'Ovidio, J. T. Farrar, S. T. Gille, B. Lepeyre, P.-Y. LeTraon, A. Pascual, A. Ponte, B. Qiu, N. Rascle, C. Ubelmann, J. Wang, and E. D. Zaron. Global observations of fine-scale ocean surface topography with the Surface Water & Ocean Topography (SWOT) mission. Front. Mar. Sci., 6:232, 2019. [ DOI ]
E. D. Zaron. Simultaneous estimation of ocean tides and underwater topography in the Weddell Sea. J. Geophys. Res., 124(5):3125--3148, 2019. [ DOI ]
E. D. Zaron. Baroclinic tidal sea level from exact-repeat mission altimetry. J. Phys. Oceanogr., 49(1):193--210, 2019. [ DOI ]
E. D. Zaron and R. D. Ray. Aliased tidal variability in mesoscale sea level anomaly maps. J. Atm. and Ocean. Tech., 35(12):2421--2435, 2018. [ DOI ]
E. D. Zaron and C. B. Rocha. Meeting summary: Internal gravity waves and meso/submesoscale currents in the ocean: Anticipating high-resolution observations from the SWOT swath altimeter mission. Bull. Am. Met. Soc., 99:ES155--ES157, 2018. [ DOI ]
E. D. Zaron. Ocean and ice shelf tides from CryoSat-2 altimetry. J. Phys. Oceanogr., 48:975--993, 2018. [ DOI ]
A. T. Devlin, E. D. Zaron, D. A. Jay, S. A. Talke, and J. Pan. Seasonality of tides in Southeast Asian waters. J. Phys. Oceanogr., 48:1169--1190, 2018. [ DOI ]
A. T. Devlin, D. A. Jay, S. A. Talke, E. D. Zaron, J. Pan, and H. Lin. Coupling of sea level and tidal range changes, with implications for future water levels. Scientific Reports, 7:17021, 2017. [ DOI ]
A. T. Devlin, D. A. Jay, E. D. Zaron, S. A. Talke, J. Pan, and H. Lin. Tidal variability related to sea level variability in the Pacific Ocean. J. Geophys. Res., 122(11):8445--8463, 2017. [ DOI ]
E. D. Zaron. Topographic and frictional controls on tides in the Sea of Okhotsk. Ocean Mod., 117C:1--11, 2017. [ DOI ]
Edward D. Zaron and Richard D. Ray. Using an altimeter-derived internal tide model to remove tides from in situ data. Geophys. Res. Lett., 44:4241--4245, 2017. [ DOI ]
E. D. Zaron. Mapping the non-stationary internal tide with satellite altimetry. J. Geophys. Res., 122(1):539--554, 2017. [ DOI ]
E. D. Zaron. Recent developments in bottom topography mapping using inverse methods. In S. Park and L. Xu, editors, Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, volume III, pages 241--258. Springer, New York, 2017. 553pp. [ DOI ]
E. D. Zaron. Laser Doppler velocimetry of a flowing soap-water film using a modified computer mouse. Am. J. Phys., 84(10):810--813, 2016. [ DOI ]
E. D. Zaron. On the observability of bottom topography from measurements of sea surface height. Ocean Mod., 102:55--63, 2016. [ DOI ]
E. D. Zaron and R. de Carvalho. Identification and reduction of retracker-related noise in altimeter-derived sea-surface height measurements. J. Atm. and Ocean. Tech., 33(1):201--210, 2016. [ DOI ]
R. D. Ray and E. D. Zaron. M2 internal tides and their observed wavenumber spectra from satellite altimetry. J. Phys. Oceanogr., 46(1):3--22, 2016. [ DOI ]
E. D. Zaron. Non-stationary internal tides observed using dual-satellite altimetry. J. Phys. Oceanogr., 45(9):2239--2246, 2015. [ DOI ]
F. Hernandez and 23 co-authors including E. D. Zaron. Recent progress in performance evaluations and near real-time assessment of operational ocean products. J. Oper. Oceanogr., 8(suppl. 2):221--238, 2015. [ DOI ]
E. D. Zaron, P. J. Fitzpatrick, S. L. Cross, J. Harding, F. L. Bub, J. D. Wiggert, D. S. Ko, Y. Lau, K. Woodard, and C. N. K. Mooers. Initial evaluations of a Gulf of Mexico/Caribbean ocean forecast system in the context of the Deepwater Horizon disaster. Front. Earth Sci., 9(4):605--636, 2015. [ DOI ]
A. T. Devlin, D. A. Jay, S. A. Talke, and E. D. Zaron. Can tidal perturbations associated with sea level variations in the western Pacific Ocean be used to understand future effects of tidal evolution? Ocean Dynamics, 64:1093--1120, 2014. [ DOI ]
E. D. Zaron and D. A. Jay. An analysis of secular change in tides at open-ocean sites in the Pacific. J. Phys. Oceanogr., 44(7):1704--1726, 2014. [ DOI ]
E. D. Zaron and G. D. Egbert. Time-variable refraction of the internal tide at the Hawaiian Ridge. J. Phys. Oceanogr., 44(2):538--557, 2014. [ DOI ]
P. Matte, D. A. Jay, and E. D. Zaron. Adaptation of classical tidal harmonic analysis to non-stationary tides, with application to river tides. J. Atm. and Ocean. Tech., 30:569--589, 2013. [ DOI ]
B. S. Chua, E. D. Zaron, L. Xu, N. L. Baker, and T. Rosmond. Recent applications of representer-based variational data assimilation. In S. Park and L. Xu, editors, Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, volume II, pages 286--301. Springer-Verlag, New York, 2013. [ DOI ]
G. S. Carter, O. B. Fringer, and E. D. Zaron. Regional models of internal tides. Oceanography, 25(2):56--65, 2012. [ DOI ]
R. D. Ray and E. D. Zaron. Non-stationary internal tides observed with satellite altimetry. Geophys. Res. Lett., 38:L17609, 2011. [ DOI ]
E. D. Zaron, M.-A. Pradal, P. D. Miller, A. F. Blumberg, N. Georgas, W. Li, and J. Muccino Cornuelle. Bottom topography mapping via nonlinear data assimilation. J. Atm. and Ocean. Tech., 28:1606--1623, 2011. [ DOI ]
E. D. Zaron. Introduction to Ocean Data Assimilation. In A. Schiller and G. Brassington, editors, Operational Oceanography in the 21st Century, pages 321--350. Springer-Verlag, Dordrecht/NL, 2011.
C. Chavanne, P. Flament, Glenn Carter, Mark Merrifield, Doug Luther, E. D. Zaron, and Klaus-Werner Gurgel. The surface expression of semi-diurnal internal tides in the Kauai Channel, Hawai'i. Part I: observations and numerical predictions. J. Phys. Oceanogr., 40:1155--1179, 2010. [ DOI ]
B. M. Hickey, R. M. Kudela, J. D. Nash, K. W. Bruland, W. T. Peterson, P. MacCready, E. J. Lessard, D. A. Jay, N. S. Banas, A. M. Baptista, E. P. Dever, P. M. Kosro, L. K. Kilcher, A. R. Horner-Devine, E. D. Zaron, R. M. McCabe, J. O. Peterson, P. M. Orton, J. Pan, and M. C. Lohan. River influences on shelf ecosystems: introduction and synthesis. J. Geophys. Res., 115:C00B17, 2010.
D. A. Jay, E. D. Zaron, and J. Pan. Initial expansion of the Columbia River tidal plume. J. Geophys. Res., 115:C00B15, 2009. [ DOI ]
B. S. Chua, L. Xu, T. Rosmond, and E. D. Zaron. Preconditioning representer-based variational data assimilation systems: Application to NAVDAS-AR. In S. Park and L. Xu, editors, Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, pages 307--320. Springer-Verlag, New York, 2009. 475 pages.
E. D. Zaron, C. Chavanne, G. D. Egbert, and P. Flament. Baroclinic tidal generation in the Kauai Channel inferred from HF-Radar. Dyn. Atm. and Oceans, 48:93--120, 2009. [ DOI ]
E. D. Zaron and J. N. Moum. A new look at Richardson number mixing schemes for Equatorial ocean modeling. J. Phys. Oceanogr., 39(10):2652--2664, 2009. [ DOI ]
J. C. Muccino, H. Arango, A. B. Bennett, B. S. Chua, B. Cornuelle, E. DiLorenzo, G. D. Egbert, L. Hao, J. Levin, A. M. Moore, and E. D. Zaron. The inverse ocean modeling system. II: Applications. J. Atm. and Ocean. Tech., 25(9):1623--1637, 2008.
E. D. Zaron and G. D. Egbert. The impact of the M2 internal tide on data-assimilative model estimates of the surface tide. Ocean Mod., 18:210--216, 2007. [ DOI ]
E. D. Zaron and G. D. Egbert. Estimating open-ocean barotropic tidal dissipation: The Hawaiian Ridge. J. Phys. Oceanogr., 36:1019--1035, 2006. [ DOI ]
E. D. Zaron and G. D. Egbert. Verification studies for a z-coordinate primitive-equation model: tidal conversion at a mid-ocean ridge. Ocean Mod., 14:257--278, 2006.
E. D. Zaron. A comparison of data assimilation methods using a planetary geostrophic model. Mon. Wea Rev., 134:1316--1328, 2006.
R. N. Miller, E. D. Zaron, and A. F. Bennett. Data assimilation in models with convective adjustment. Mon. Wea Rev., 122:2607--2613, 1994.
W. Fang, M. Shillor, E. Stahel, E. Epstein, C. Li, J. McNiel, and E. D. Zaron. A mathematical model for outgassing and contamination. SIAM Journal on Applied Mathematics, 51:1327--1355, 1991.
R. L. Munroe, R. H. Munroe, J. Turner, E. D. Zaron, H. A. Potter, and E. J. Woulbroun. Sex differences in East African dreams of aggression. Journal of Social Psychology, 129:727--728, 1989.